

Lower Plasma Amyloid beta-42 Levels Associated With Worse Survival in Patients With Glioma

MILAGROS ANDREA VICTORIA ALBANO LAZO¹, KIHWAN HWANG^{1,2}, KYEONGJIN SEO^{1,3}, MINHEE NOH⁴, JAY PARK⁵, KWANG-SUNG AHN⁶, SO YOUNG JI¹, JUNG HO HAN^{1,3} and CHAE-YONG KIM^{1,3}, *

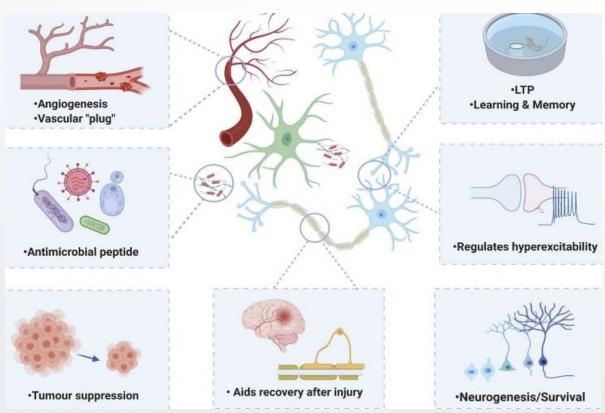
¹Department of Neurosurgery, Seoul National University Bundang Hospital;

²Department of Neurosurgery, Seoul National University College of Medicine;

³Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul;

⁴Seoul National University College of Medicine;

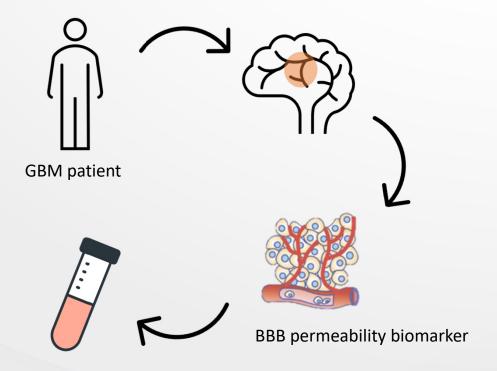
⁵The University of Edinburgh, Edinburgh Medical School, Edinburgh, U.K.;


⁶Functional Genome Institute, PDXen Biosystems Inc.

Backgrounds

lacktriangle A schematic representation of the suggested physiological roles of Aeta in the brain and body

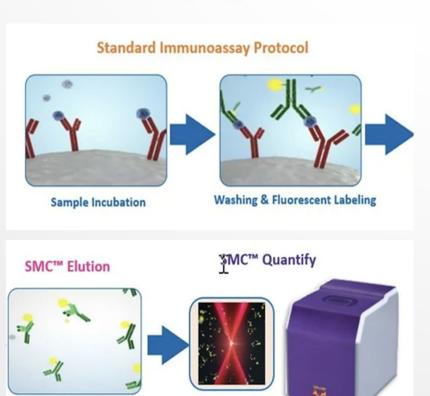
Acta Neuropathol. 2020; 140(4): 417-447


- Some research indicates that Aβ, typically linked to AD, may act as a tumor suppressor, with studies showing an inverse relationship between AD and certain cancers.
- Aβ could also indirectly suppress tumor formation through intercepting oncogenic viruses, or via scavenging free metal ions, restricting availability of micronutrients required for cell proliferation

Backgrounds

The purpose of this study

A novel non-invasive biomarker for the prediction of glioma histology and prognosis


- Glioma, a type of brain tumor, is highly prevalent and associated with poor outcomes, especially in high-grade cases like glioblastomas (GBMs)
- O Aβ has been found in the brains, cerebrospinal fluid, and serum of glioma patients, making it a potential biomarker for glioma histology and prognosis
- O This study aims to investigate the relationship between serum Aβ42 levels and the prognosis of astrocytoma patients, offering a non-invasive method for predicting glioma outcomes

Methods

Elution Step

Immunoassay for amyloid-beta 42

SMCxPRO

Preparation process for collected samples

- ➤ Samples were used immediately stored at -20°C, while reagents from the SMCxPRO kit were stored at 4°C and thawed at room temperature
- ➤ Blood samples were centrifuged at 13,000 × g for 10 minutes, and the supernatant was diluted at a 1:4 ratio with a standard diluent reagent before adding 100 microliters to each assay plate well

Aβ42 antibody hybridization

- > Anti-Aβ42 antibody-coated beads were resuspended, added to each well, and incubated for 2 hours at 25°C and 500 rpm
- After washing, buffer D was added, and the eluate was transferred for reading in a V-bottom plate, which was then sealed, agitated, and centrifuged before analysis using the SMCxPRO

Results

Association between serum Aβ42 concentration and the glioma progression

Table 1. Demographic and clinical characteristics of the patients with WHO grade of astrocytoma

	WHO grade			
	All	Π^1	III^2	IV ³
No. of patients	48	1 (2.0%)	6 (12.5%)	41 (65.1%)
Age in years (mean±SD)	55.2 (±12.5)	50.0 (±0.0)	45.5 (±10.1)	56.7 (±12.3)
Sex				
Male	30 (62.5%)	0	4	26
Female	18 (37.5%)	1	2	15
Immuno-markers				
Amyloid beta 42 (mean±SD, pg/ml)	6.7 (±6.6)	13.6 (±0.0)	7.6 (±7.8)	6.4 (±6.5)
EGFR (No. of positive cases)	40 (83.3%)	1	5	34
GFAP (No. of positive cases)	48 (100%)	1	6	41

¹Grade II subtypes (Diffuse astrocytoma, n=1), ²Grade III subtypes (Anaplastic astrocytoma, n=6), ³Grade IV subtypes (Glioblastoma multiforme, n=41).

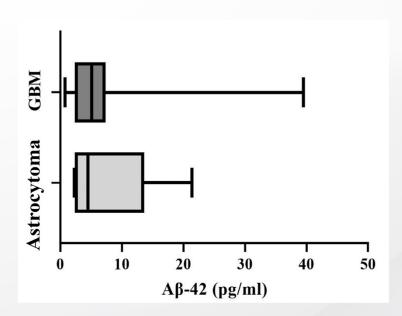
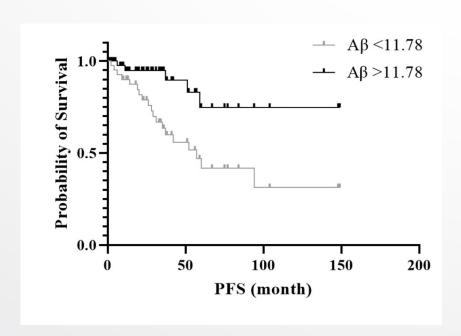
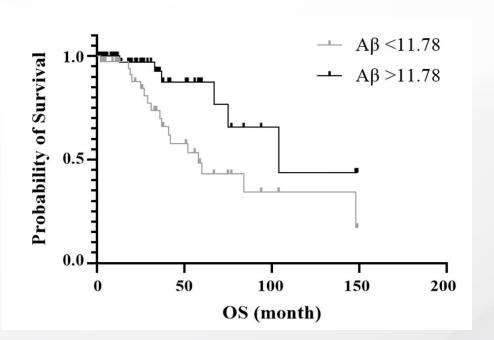
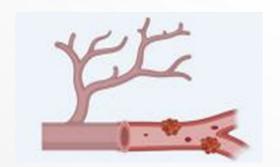
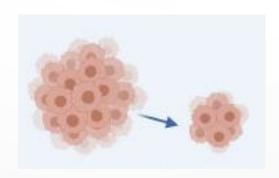



Figure 1. Comparison of serum A642 concentrations between astrocytoma and glioblastoma multiforme group

Results

Progression-Free Survival and Overall Survival based on serum Aβ42 level


Figure 2. Kaplan–Meier curves for progression-free survival (PFS) and overall survival (OS) of patients with astrocytoma based on serum A642 levels

Conclusions

Vascular plug

Tumor suppression

The low Aβ42 group had a lower survival rate than the high Aβ42 group. The finding is similar to previous studies suggesting that Aβ has tumor suppressor potential. These results suggest that Aβ42 has a potential role as a prognostic marker in glioblastoma.