

Clinical ability of contrast-enhanced MRI to predict treatment outcomes for lumbar facet joint pain

Chi Hwan An¹, Kyung Hee Do¹ 'Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea

Objective

- Several radiologic imaging techniques have been used to predict the effects of treatment on lumbar facet joint (LFJ) pain.
- However, there are no reports on the use of contrast-enhanced magnetic resonance imaging (MRI) in the management of LFJ pain.
- In the current study, we aimed to evaluate the clinical ability of contrast-enhanced MRI using gadolinium to predict treatment outcomes for LFJ pain.

Methods

- Subjects
 - Inclusion criteria
 - Age: 21-79 years
 - Lumbar axial pain persisting for more than six months without radicular symptoms
 - Numerical rating scale (NRS) > 3
 - A minimum of 80% temporary pain improvement for a minimum of 30 minutes after a selective diagnostic block to each LFJ pain location
 - Local paraspinal tenderness with increased pain during rotation, lateral bending and hyperextension
 - Lower lumbar spine pain that increased during rotation, lateral bending, and hyperextension; and local paraspinal tenderness.
 - Patients who had been treated with contrast-enhanced lumbar spine MRI using qadolinium that showed spondyloarthropathy.
 - Exclusion criteria
 - Allergy to contrast materials, spinal instability, disc herniation, lumbar spinal stenosis, coagulopathy, any uncontrolled psychiatric or medical condition, and rheumatic diseases.
- Two radiologists independently investigated LFJ enhancement and osteoarthritis grading
- Patients were classified into enhanced and non-enhanced groups, based on contrastenhanced MRI scans using gadolinium (Fig. 1).

Figure 1. Enhancement and non-enhancement of the lumbar facet joint in axial contrast-enhanced T1 magnetic resonance imaging.

(A) Enhanced lumbar facet joint (B) Non-enhanced lumbar facet joint

- · Grading criteria for osteoarthritis(OA) of the facet joint
 - 0 : normal facet joint space (2-4 mm width)
 - 1: narrowing of the facet joint space (< 2 mm), and/or presence of small osteophytes, and/or mild hypertrophy of the articular process
 - 2 : narrowing of the facet joint space, and/or presence of moderate osteophytes, and/or moderate hypertrophy of the articular process, and/or mild subarticular hone erosions
 - 3 : narrowing of the facet joint space, and/or presence of large osteophytes, and/or severe hypertrophy of the articular process, and/or severe subarticular bone erosions, and/or subchondral cysts
- IA corticosteroid injection procedure was administered using C-arm fluoroscopic quidance (Siemens, Erlangen, Germany).
 - 10 mg (0.25 mL) of dexamethasone with 0.5 mL of 0.25% bupivacaine
- Clinical outcomes using NRS score
 - . Before treatment, 1, 2, and 3 months after treatment
- Statistical analysis: p value < 0.05</p>

Table 1 Demographic and clinical data of the patients

Variable	Enhanced group	Non-enhanced group	p-value
Sex (male/female)	9/7	5/5	1
Mean age (years)	68.88±9.24	59.30±11.60	0.035*
Duration until treatment	29.25±28.19	33.30±46.22	0.500
from pain onset (months)	29.25±28.19	33.30±46.22	0.689
Facet degeneration grade			
(grade 1/2/3)	4/7/5	3/5/2	0.886

Values are shown as number or mean±standard deviation. *p<0.05.

Facet degeneration grades are graded by criteria for grading osteoarthritis of the lumbar facet joints on T2-weighted imaging.

- Clinical outcomes (Table 2, Fig. 2)
 - In both the enhanced and non-enhanced groups, NRS scores significantly decreased at 1, 2, and 3 months after treatment (p < 0.05).
- However, we saw no significant difference between the groups from pretreatment to three months after treatment (p > 0.05).

Table 2 Changes in numerical rating scale scores from pretreatment to 3 months after treatment

Enhanced group	Non-enhanced group	p-value (group comparison)
		0.746
4.36±0.81	4.60±1.26	
2.50±1.26	2.10±1.52	
2.38±1.36	2.00±1.76	
2.38±1.41	2.30±1.83	
<0.001*	<0.001*	
	group 4.36±0.81 2.50±1.26 2.38±1.36 2.38±1.41	group group 4.36±0.81 4.60±1.26 2.50±1.26 2.10±1.52 2.38±1.36 2.00±1.76 2.38±1.41 2.30±1.83

Values are shown as number or mean±standard deviation. *p<0.05.

NRS: numerical rating scale, time effect: temporal changes of NRS scores in each group after treatment.

Result

- A total of 26 patients (12 women and 14 men; mean age: 65.19±11.05 years) with LFJ pain were recruited.
- Demographic and clinical data of the patients
 - Among the 26 patients, 16 patients were included in the enhanced group, and the remaining 10 patients were included in the non-enhanced group, based on contrastenhanced MRI scans using gadolinium (Table 1).

Fig 2: Comparative results of numerical rating scale of lumbar facet joint pain in enhanced and non-enhanced groups. *p<0.05

Duration of post treatment (months)

- There was 100% agreement between the two radiologists about the enhancement and grading for osteoarthritis of the LFJs. In addition, the Cohen's kappa score for the agreement of two radiologists was 1.00.
- No serious complications or adverse events were reported.

Conclusion

- We evaluated the clinical ability of contrast-enhanced MRI using gadolinium to predict treatment outcomes for LFJ pain.
- This study is the first trial evaluating the correlation between contrast-enhanced MRIs using gadolinium and treatment outcomes for LFJ IA steroid injections.
- Our study found no correlation between contrast-enhanced MRI findings and LFJ steroid injections.
- The routine use of contrast-enhanced MRI using gadolinium is not recommended in patients with LFJ pain.